MyScience    2000    首页 下一节
mathfan文库   大于 的偶数至少可表为:二个大于 的模 … 的简化剩余之和


大于的偶数至少可表为:二个大于的模的简化剩余之和
——大于的偶数至少可表为:二个大于的奇素数之和

 

张    忠 (言) 
江苏省南通市崇川忠言书店              江苏  南通  226001

摘要:本文利用同余理论揭示了关于模,二元一次不定方程
)=2的特解:之间固有的联系规律,从而用数学归纳法证明了:大于的偶数至少可表为:二个大于的模的简化剩余之和,继而推出:大于的偶数,至少可表为:二个大于的奇素数之和。

关键词: 素数  模  同余  简化剩余
Any Even Number Greater Than  Could be Expressed as the Sum of Simplified Residue of Two
Modules
 Which Are Greater Than   ———Any Even Number Greater Than  Could be
Expressed as the Sum of Two Prime Numbers Greater Than 
 

Zhang Zhong
(Zhong Yan Bookshop, South District of Nantong City)


AbstractThis essay employs the theory of residue and reveals the intrinsic linked relation between  
and , regarding particular answers to linear Diophantire equation
)=2), concerned with module
That is to say, we can with mathematical induction certify:any even number greater than  could be expressed as the sum of simplified residue of two modules  which are greater than .Then we can draw the conclusion that any even number greater than  could be expressed as the sum of two odd prime numbers greater than .


Key words:  
 prime number    module     residue     simplified residue

引言:
“大于4的偶数可表为二奇素数之和。”此即著名的“Goldbach”猜想。欲证其真伪,首先要解决的问题有:什么是素数?!怎么表示素数?!至少怎么表示小于预先已任意给定了的的素数?!最后就是怎么表示和为的两个奇素数?!

众所周知,素数就是除1以外,仅能被1和本身整除的整数,同时,素数判别法和同余理论提示:

大于1小于的模的简化剩余均为素数。而模的简化剩余是已被素数模的简

下一节


声明:除注明来源的文章外,本站内容版权属mathfan网站所有。
如需转载本站内容,请先同我们联系。
请来信lihaibo.cn@gmail.com

2000